
International Journal of Theoretical Physics, Vol. 43, No. 5, May 2004 ( C© 2004)

Fractional Spin of System With Chern–Simons
Term Coupled to Polaron

Zhang Ying1,3 and Li Ziping1,2

Received

The fractional spin of a system with Chern–Simons (CS) term coupled to a polaron at
the quantum level is studied. The Faddeev–Senjanovic (FS) scheme for path-integral
quantization of constrained Hamiltonian systems is applied. The quantal conserved
angular momentum and the fractional spin at the quantum level of this system are
presented based on the quantal Noether theorem. The fractional spin is also presented
for the system with Maxwell kinetic term.
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1. INTRODUCTION

The concepts of fractional spin and statistics are special to two spatial di-
mentions (Wilczeck, 1982). They have attracted considerable attention (Kim and
Lee, 1994; Kim and Park, 1994; Wilczeck and Zee, 1983), partly because of the
suggestion that the quantum Hall effect and high- Tc superconductivity are planar
physical phenomena that such concepts might describe correctly with CS theory.
The Abel CS theory minimally coupled to the matter fields is usually considered
as the base system at the field-theoretical level and the property of fractional spin
and statistics is possible provided these field theories contain the CS term (Kim,
Kim, and Shin, 1994). CS gauge field does not have real dynamics of its own
whose dynamics comes from the field to which it is minimally coupled. In the dis-
cussion of the angular momenta for anyons, the results were deduced by using the
symmetric energy-momentum tensor or the classical Noether theorem (Banerjee,
1994; Bannerjee, 1993) and it needs further study that whether they are valid at
the quantum level or not. The models with CS term coupled to Scalar and spinor
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QED are discussed (Jiang and Li, 1999; Li and Li, 2002) in which the fractional
spin and statistics is revealed at the quantum level. Is there still the fractional spin
and statistics property in the system of Chern–Simons term coupled to polaron.
We shall study this problem at the quantum level.

In the formulation of path-integral quantization, the main ingredient is the
classical action together with the measure in the space of field configurations.
Thus, the path integrals provide a useful tool for studying the quantal symme-
tries of a system. The phase-space path integrals are more fundamental than the
configurations-space path integrals. In this paper, the property of fractional spin
of the system with CS term coupled to polaron at the quantum level is studied.
According to the rule of path integral quantization for constrained Hamiltonian
system in FS scheme, the system is quantized. Based on the quantal Noether
theorem, the quantal conserved quantities (including conservation of angular mo-
mentum) have been calculated, and the fractional spin at the quantum level of this
system is presented. The system is presented. The system including the Maxwell
kinetic term is also considered. In this case, the property of fractional spin is also
presented.

2. CHERN–SIMONS TERM COUPLED TO POLARON

The electron-phonon system (polaron) is basic to the BCS theory of super-
conductivity for metals. The interaction has been described by using a singular
Lagrangian in (1 + 1)-dimensional space-time and the canonical quantization for
this Lagrangian was given by using Dirac brackets (Rodriguez-Nunez, 1990).
But the electronic field in this Lagrangian satisfies the Schrodinger’s equation
which cannot reflect the correct anti-commutation relations after quantization and
describe the spin of electron. Here we use Dirac’s spinor to describe the elec-
tron and those difficulties above will be eliminated. Thus, the (2+1)-dimensional
Lagrangian of the electron–phonon system can be modified by

L = ψ(iγ µ∂µ − m)ψ + 1

2
[ρq̇2 − s(∇q)2] − Gψγ 0ψq (1)

where ρ, s, and G are parameters, ψ is the spinor field and ψ = ψ+γ 0, q is the
phonon field. Throughout this paper the same notation as in Rodriguez-Nunez
(1990) will be used.

The Lagrangian of the system with Chern–Simons term coupled to polaron
in (2+1)-dimensional space-time is given by

L = κ

4
εµνλ Aµ∂ν Aλ + ψ(iγ µ Dµ − m)ψ + 1

2
{ρ[(∂0 − i A0)]2

−s[∂i − i Ai )q]2} − Gψγ 0ψq (2)

where the covariant derivative is defined byDµ = δµ − i Aµ. Aµ is CS gauge field.
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The Lagrangian density (2) is singular in the sense of Dirac. First we determine
the constraints of this system in phase space. The canonical momenta conjugate
to the fields Aµ, ψ, ψ , and q are

π0 = ∂L

∂ Ȧ0
= 0, πψ = ∂rL

∂ψ̇
= iψγ 0, πψ = ∂rL

∂ψ̇
= 0, πq = ∂L

∂q̇
= ρq̇ (3a)

and

π i = ∂L

∂ Ȧi
= k

4
εi j A j , (3b)

respectively. The primary constraints of the system are given by

θ0
1 = π i − k

4
εi j A j ≈ 0, θ0

2 = π0 ≈ 0, θ0
3 = πψ − iψγ 0 ≈ 0,

θ0
4 = πψ ≈ 0, (4)

where symbol “≈” means weak equality in Dirac sense. The canonical Hamiltonian
density corresponding to the Lagrangian (2) is given by

Hc = πµ Aµ + πψψ̇ + πψψ̇ + πq q̇ − L

= ψ(−iγ i Di + m)ψ + 1

2ρ
π2

q + s

2
(∇q)2 + Gψγ 0ψq − 1

2
s A2

i q2

−is Ai q∂i q + k

2
εi j A0∂i A j − ψγ 0 A0ψ + 1

2
ρq2 A2

0 + iqπq A0 (5)

The total Hamiltonian is given by

HT =
∫

v
d3x

(
Hc + λ1θ

0
1 + λ2θ

0
2 + λ3θ

0
3 + λ4θ

0
4

)
(6)

The consistency conditions θ̇0
1 = {θ0

1 }, HT ≈ 0 and θ̇0
2 = {θ2

0}, HT ≈ 0 lead to
secondary constraints

θ1
1 = s Ai q

2 + is∂i q + ψγ iψ − k

2
εi j∂ j A0 ≈ 0 (7)

θ1
2 = −k

2
εi j∂i A j − ρq2 A0 − iqπq + ψγ 0ψ ≈ 0 (8)

The stationarity of the primary constraints {θ3
0, HT ≈ 0} and {θ4

0, HT ≈ 0} lead
to the equations for determining the Lagrange multipliers λ4, λ3.

iγ 0λ4 = ψ(iγ i Di − m) − Gψγ 0q + Gψγ 0 A0 (9)

iγ 0λ3 = −(iγ i Di − m)ψ + Gγ 0qψ − Gγ 0 A0ψ (10)
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The consistency condition of the second constraints θ̇1
1 ≈ 0, θ̇1

2 ≈ 0, lead to the
equation for determining the Lagrange multipliers λ2, λ1

k

2
ρεi j∂ jλ2 = −s(2Ai q − is∂ i )(πq + iρq A0) (11)

k

2
εi j∂ jλ1 = i

1

ρ
π2

q − isq∂i∂
i q − iGψγ 0ψq − is A2

i q2

+2s Ai q∂i q + 2q A0πq (12)

It is easy to check that the constraints are all second-class constraints. According
to FS quantization formulation, the phase-space generating functional of Green
function for the system (2) is given by (Senjanovic, 1976)

Z [J, K ] =
∫

Dϕα
Dπα

∏
i

δ(θi )(det|{θi , θ j }|)1/2

· exp

{
i
∫

d3x(παϕ̇α − Hc + Jαϕα + K απα)

}
(13)

where ϕα denote all fields, ϕα = (ψ, ψ , Aµ, q),and πα are momenta with respect
to ϕα . Here we have introduced the exterior sources Jα with respect to the field ϕα ,
and the exterior sources K α with respect to momenta πα . It is easy to find out that
det|{θi , θ j }| independent of field variables. Thus, we can omit this factor from the
generating functional (13). Using the properties of the δ-function, the expression
(13) can be written as (Li and Jiang, 2002)

Z [J,K ,Y ] =
∫

Dϕα
DπαDµi · exp

{
i
∫

d3x
(
L

p
eff + Jαϕα

+K απα + Yiµi
)}

(14)

where

L
p
eff = L

p + Lm (15)

L
p = πµ Ȧµ + ψ̇πψ + ψ̇πψ + πq q̇ − Hc (16)

Lm = µiθi (17)

µi are multiplier fields connected with the constraints θi , and Yi are exterior sources
with respect to µi .

3. FRACTIONAL SPIN AND STATISTICS

We first formulate the results of the quantal canonical Noether theorem:
If the effective action I p

eff = ∫
d2xL

p
eff is invariant under the following global
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transformation in extended phase space


xµ′ = xµ + �xµ = xµ + εσ τµσ (x , ϕ, π )
ϕ′(x ′) = ϕ(x) + �ϕ(x) = ϕ(x) + εσ ξσ (x , ϕ, π )
π ′(x ′) = π (x) + �π (x) = π (x) + εσ ησ (x , ϕ, π )

(18)

where ϕ and π denote: ϕ = (ψ, q , Aµ, µi ), π = (πψ , πq , πµ), respectively, and
εσ (σ = 1, 2, . . . , r ) are infinitesimal arbitrary parameters, τµσ , ξσ , ησ are some
smoothed functions of canonical variables and time , and if the Jacobian of the
transformation (18) of the field variables is equal to unity, then, according to
canonical Noether theorem in quantum formalism, there are conserved laws at the
quantum level (Li, 1996a,b)

Qσ =
∫

d2x[π (ξσ − ϕ,kτ
kσ ) − Heffτ

0σ ] = const, σ = (1, 2, . . . , r ) (19)

where Heff is an effective Hamiltonian density connected with L
p
eff. For the La-

grangian (2) whose effective canonical action is invariant under the spatial trans-
lation, the Jacobian of the transformation of the field variables is equal to unity,
and in this case τ 0σ = 0. From expression (19), we obtain the conservation of
momentum at the quantum level

p̄ = −
∫

d2x(πµ∇ Aµ + πψ∇ψ + πq∇q) (20)

With the invariance of time translation, τ iσ = 0 (i = 1, 2, 3), from expression
(19), quantal conservation of energy on the constrained hypersurface is
given by

E =
∫

d2x

[
ψ(−iγ i Di + m)ψ + 1

2ρ
π2

q + s

2
(∇q)2 + Gψγ 0ψq

−1

2
s A2

i q2 − is Ai q∂i q + 1

2
ρq2 A2

0

]
(21)

The effective canonical action is invariant under the following global gauge
transformation

ψ ′(x) = e−ieεψ(x), π ′
ψ (x) = eieεπψ (x)

From (19), the conservation of charge at the quantum level is given by

Q′ = e
∫

d2xψ(x)γ 0ψ(x) = e
∫

d2xψ+(x)ψ(x) (22)

Under the spatial rotation τ 0σ = 0, and the Jacobian of the transformation of the
fields are equal to unity , according to (19), we obtain the quantal conserved angular
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momentum for this system:

L =
∫

d2xεi j
[(

πk Skl
i j Al + xiπ

k∂ j Ak
) + (

πψα Rαβ

i j ψβ + xiπψ∂ jψ
)

+ xiπq∂ j q
]

(23)

where Skl
i j = δk

i δ
l
j − δk

j δ
l
i , Rαβ

i j = 1
2 (γiγ j )αβ .The quantal conserved angular mo-

mentum under the spatial rotation coincides with the result derived from classi-
cal Noether theorem.. Substituting (3b) into ( 23 ), using the relations ε jkεil =
δ

j
i δK

l − δ
j
l δK

i , one gets (Bannerjee and Chakraborty, 1994)

L =
∫

d2xεi j xi (πψ∂ jψ + πq∂ j q + Fk0∂ j Ak) +
∫

d2xεi jπψα Rαβ

i j ψβ

+k

4

∫
d2x[εi j xi A j (ε

lk∂l Ak)] (24)

From the Lagrange (2) we write the Euler–Lagrange equation corresponding
to Aµ

k

2
εµνλ∂ν Aλ = Jµ (25)

let µ = 0, one obtains
k

2
εi j∂i A j = J 0 (26)

Observe that (26) leads to a continuity equation

∂µ Jµ = 0 (27)

where Jµ is given by

J 0 = ψγ 0ψ − iρ(q D0q), (28)

J i = ψγ iψ + is(q Di q) (29)

If we solve Eq. (26), we obtain (Kim, Kim, and Shin, 1994)

Ai (x) = 2

k
εi j∂

j
x

∫
d2 yG(x − y)J0(y) (30)

where G(x − y) = − 1
2π

ln |x − y|+ const is the Green’s function for the Laplacian
in two dimensions, ∂i∂i G(x , y) = δ(2)(x − y).

Thus, the third term on the right hand of Eq. (24) can be written as

k

4

∫
d2xεi j xi A jε

kl∂k Al = 1

2πk

∫
d2xd2 yxi j0(x)G(x − y)∂i j0(y)

= 1

2πk

∫
d2xd2 y j0(x)xk

(x − y)k

|x − y|2 j0 y = Q2

4πk
(31)



Fractional Spin of System With Chern–Simons Term Coupled to Polaron 1237

from (24) and (31), one can obtain

L =
∫

d2xεi j xi (πψ∂ jψ + πq∂ j q + Fk0∂ j Ak)

+
∫

d2xεi jπψα Rαβ

i j ψβ + Q2

4πk
(32)

where Q = ∫
d2x J 0 (Kim, Kim, and Shin, 1994), the first term on the right-hand

of Eq. (32) is the orbit angular momentum operator, the second term is normal
spin term operator for the spinor field, the third term is the anomalous one which
is interpreted as a spin operator and it is obviously obtained from the orbit angular
momentum (Kim, Kim, and Shin, 1994).

Now we denote this spin operator by S, S = Q2/4πk, and the one-particle
(anyon) state is denoted by |1 > any, Then, if one rotates the one-particle state with
S, one obtains

eiβs
∣∣1 > any= eiβ(1/4πk)

∣∣1 > any (33)

where β is the rotation parameter. The eigenvalue of spin operator S is the spin s.
Thus one obtains a relation between the spin s and the CS coefficient k,namely

s = 1

4πk
(34)

If we take β, as 2π , for 2k = 1/π (2n + 1)(n ∈ Z ), the one-pratical state picks
up a minus sign implying it is a fermionic, and these values of k the spin s take
half-integer values. While, for 2k = 1/π (2n)(n ∈ Z ), the one-practicle state does
not change, and hence it becomes bosonic, and the spin s takes integer values, for
the other values of k, the state becomes anionic, and the spin s is fractional (Kim,
Kim, and Shin, 1994).

4. CHERN–SIMONS TERM COUPLED TO POLARON WITH
MAXWELL KINETIC TERM

In (Kim, Kim, and Shin, 1994), the author puts forward that whether the
properties of anyons still survive after inclusion of the Maxwell kinetic term or not
needs further study. The model with CS term and Maxwell kinetic term coupled
to Scalar and spinor QED have been discussed (Jiang and Li, 1999; Li and Li,
2002), in which the fractional spin and statistics still occur at the quantum level.
Here we shall study the system with CS term coupled to polaron with Maxwell
term.

If we add the Maxwell kinetic term to the Lagrangian (2), in that case the
Lagrangian of the system can be written as

L = −1

4
Fµν Fµν + κ

4
εµνλ Aµ∂ν Aλ + ψ(iγ µ Dµ − m)ψ
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+1

2
{ρ[(∂0 − i A0)q]2 − s[(∂i − i Ai )q]2} − Gψγ 0ψq (35)

The canonical momenta conjugate to the fields Aµ, ψ, ψ , and q are

π i = −F0i + k

4
εi j A j and (36a)

π0 = 0, πψ = iψγ 0, πψ = 0, πq = ρq̇, (36b)

respectively. The primary constraints of the system are given by

θ0
1 = π0 ≈ 0, θ0

2 = πψ − iψγ 0 ≈ 0, θ0
3 = πψ ≈ 0, (37)

The canonical Hamiltonian density corresponding to the Lagrangian is

Hc = πµ Ȧµ + πψψ̇ + πψψ̇ + πq q̇ − L = −1

2
π iπi + k

2
εi jπi A j

− k2

16
Ai A j − A0∂iπ

i + 1

4
Fi j Fi j + ψ(−iγ i Di + m)ψ + 1

2ρ
π2

q + s

2
(∇q)2

+Gψγ 0ψq − ψγ 0 A0ψ − 1

2
s A2

i q2 − is Ai q∂i q − k

4
εi j A0∂i A j

+1

2
ρ A2

0q2 + iqπq A0 (38)

The total Hamiltonian is given by

HT =
∫

d3x
(
Hc + λ1θ

0
1 + λ2θ

0
2 + λ3θ

0
3

)
(39)

The consistency condition {θ0
1 , HT} ≈ 0 leads to secondary constraints

θ1
1 = ∂iπ

i + k

4
εi j∂i A j − ρq2 A0 − iqπq + ψγ 0ψ ≈ 0 (40)

The consistency conditions of the primary constraints θ̇0
2 ≈ 0, θ̇0

3 ≈ 0 and the
secondary constraints θ̇1

1 ≈ 0, lead to the equation for determining the Lagrange
multiplier λ3, λ2, λ1, but do not produce additional constraints. It is easy to check
that the constraints are all second-class constraints.

Using the quantal canonical Noether theorem, one can proceed in the same
way as before to obtain the quantal conserved quantities.The conservation of mo-
mentum at the quantum level which is similar to the result without inclusion of
Maxwell kinetic term is

P̄ = −
∫

d2x(πψ∇ψ + πq∇q + πµ Aµ) (41)
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The conservation of energy on the constrained hypersurface at the quantum level
is

E =
∫

d2x

[
−1

2
π iπi + k

2
εi jπi A j − k2

16
Ai A j + 1

4
Fi j Fi j + ψ(−iγ i Di + m)ψ

+ 1

2ρ
π2

q + s

2
(∇q)2 + Gψγ 0ψq − 1

2
s A2

i q2 − is Ai q∂i q − 1

2
ρ A2

0q0

]
(42)

The quantal conserved angular momentum for this system is

L =
∫

d2xεi j
(
πk Si j

kl Al + xiπ
k∂ j Ak

) + (
πψα Rαβ

i j ψβ + xiπψ∂ jψ
) + xiπq∂ j q

(43)
Substituting (36a) into ( 43) ,one gets

L =
∫

d2xεi j xi (Fk0∂ j Ak + πψ∂ jψ + πq∂ j q) +
∫

d2xεi jπψα Rαβ

i j ψβ

+
∫

d2xεi j Fko Skl
i j Al +

∫
d2xεi j k

4
xi A j (ε

lk∂l Ak) (44)

From the Lagrange (35) the Euler–Lagrange equation corresponding to Aµis given
by

∂ν Fµν + k

2
εµνλ∂ν Aλ + Jµ = 0 (45)

let µ = 0, one obtains

∂iπ
i + k

4
εi j∂i A j + J 0 = 0 (46)

from (46), we can obtain

Ai (x) = −4

k
εi j∂

j
x

∫
d2 yG(x − y)J 0(y) (47)

From (47), (44) becomes

L =
∫

d2xεi j xi (Fk0∂ j Ak + πψ∂ jψ + πq∂ j q) +
∫

d2xεi jπψα Rαβ

i j ψβ

+
∫

d2xεi j Fk0Skl
i j Al − Q2

πk
(48)

where Q = ∫
d2x J 0. It can be seen from (48) that the Maxwell term contributes the

orbit and spin terms to the total angular momentum. The fractional spin property
is still presented but the result is different from the one that is derived of the model
without the inclusion of Maxwell term.
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5. CONCLUSION AND DISCUSSION

We have treated the model with Abelian CS term coupled to polaron without
Maxwell kinetic terms and with it separately at the quantum level. According
to the rule of path integral quantization for constrained Hamiltonian system in
FS scheme the system is quantized. Based on the quantal Noether theorem, we
derived a generalized spin-statistics relation at the quantum level by computing
the angular momentum. The Maxwell kinetic term does not alter the property of
fractional spin.

In this case, all constraints are second-class constraints, so there are no gauge
transformations corresponding to first-class constraints. But it will be convenient
to discuss the same problem by Dirac canonical quantization. It needs further
study to determine whether the fractional spin can be described by the formalism
of quantization or not.

It needs further study to see whether the property of fractional spin is still
presented or not at the quantum level after including the non-Abelian CS term.
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